Is there a particle that interacts with muons but not electrons?

This is a big if but if there is an unknown force that interacts with muons but not electrons then the following anomalies could be explained in one sweep:

  1. broken lepton universality
  2. proton size being slightly larger when it is orbited by an electron than when it is orbited by a muon
  3. muon’s magnetic moment being larger than the theoretically predicted value

These anomalies are statistically significant but more data are needed to confirm them as discoveries. Once the anomalies are confirmed then we will be certain that there is new physics beyond SM (Standard Model) – current theory of paricle physics – but then the challenge will be to find an explanation for the anomalies. One possibility is that there is a particle/force that interacts with muons but not electrons.

Tests of lepton universality

Electron, muon and tau are identical except for their invariant masses. Muon is 206.85 times heavier than electron and tau is 16.8 times heavier than muon.

Electron, muon and tau are identical with respect to the electromagnetic force because they carry the same electrical charge (-1). They are also identical with respect to the weak nuclear force because electrons, muons and tau particles are produced (after adjustment for the masses ) equally often in weak decays. We don’t understand why there are 3 copies of the same particle with different masses but physicists refer to this puzzling similarity of electron, muon and tau as “lepton universality.”

Experimental evidence is groving that electron, muon and tau are not exactly identical with respect to the weak nuclear force. SLAC’s Vera Luth explains the experimental side of this story  here.

Experiments measuring the size of  a proton

Good writing makes a difference. I wish I could write as well as Natalie Wolchover.

“The puzzle is that the proton — the positively charged particle found in atomic nuclei, which is actually a fuzzy ball of quarks and gluons — is measured to be ever so slightly larger when it is orbited by an electron than when it is orbited by a muon, a sibling of the electron that’s 207 times as heavy but otherwise identical. It’s as if the proton tightens its belt in the muon’s presence. And yet, according to the reigning theory of particle physics, the proton should interact with the muon and the electron in exactly the same way. As hundreds of papers have pointed out since the proton radius puzzle was born in 2010, a shrinking of the proton in the presence of a muon would most likely signify the existence of a previously unknown fundamental force — one that acts between protons and muons, but not between protons and electrons. (Interestingly, this new physics could also explain a long-standing discrepancy in the measurement of the muon’s anomalous magnetic moment.)”  – Natalie Wolchover 

There is another article that packs a lot of information regarding the proton radius measurements.

There’s  still a lot we don’t know about the proton” by Emily Conover

Muon g-2 experiments

As I indicated in my post titled “Muon g-2 mystery“, the final report of the E821 experiment at BNL (Brookhaven National Laboratory) showed that the muon’s magnetic moment was higher than the theoretically predicted value. Fermilab will repeat this experiment with better statistics. Fermilab muon g-2 experiment will measure muon’s magnetic moment to a precision of 140 parts per billion. This will be a factor of 4 improvement over E821 experiment’s precision. Fermilab muon g-2 experiment (E989) has started its operations.


About Suresh Emre

I have worked as a physicist at the Fermi National Accelerator Laboratory and the Superconducting Super Collider Laboratory. I am a volunteer for the Renaissance Universal movement. My main goal is to inspire the reader to engage in Self-discovery and expansion of consciousness.
This entry was posted in physics and tagged , , , , . Bookmark the permalink.